You get a bonus - 1 coin for daily activity. Now you have 1 coin

5.3. The probability of hitting a random variable on a given area

Lecture



When solving practical problems related to random variables, it is often necessary to calculate the probability that a random variable will take a value contained within certain limits, for example, from   5.3.  The probability of hitting a random variable on a given area before   5.3.  The probability of hitting a random variable on a given area . We will call this event “a hit of a random variable   5.3.  The probability of hitting a random variable on a given area on the plot from   5.3.  The probability of hitting a random variable on a given area before   5.3.  The probability of hitting a random variable on a given area ".

Let's agree for definiteness the left end   5.3.  The probability of hitting a random variable on a given area include in the plot   5.3.  The probability of hitting a random variable on a given area , and the right one is not included. Then hit a random variable   5.3.  The probability of hitting a random variable on a given area on the plot   5.3.  The probability of hitting a random variable on a given area equivalent to the fulfillment of inequality:

  5.3.  The probability of hitting a random variable on a given area .

Express the probability of this event through the distribution function of   5.3.  The probability of hitting a random variable on a given area . To do this, consider three events:

event A is that   5.3.  The probability of hitting a random variable on a given area ;

event B is that   5.3.  The probability of hitting a random variable on a given area ;

event C is that   5.3.  The probability of hitting a random variable on a given area .

Considering that   5.3.  The probability of hitting a random variable on a given area , by the addition theorem we have:

  5.3.  The probability of hitting a random variable on a given area ,

or

  5.3.  The probability of hitting a random variable on a given area ,

from where

  5.3.  The probability of hitting a random variable on a given area , (5.3.1)

those. the probability of a random variable falling on a given area is equal to the increment of the distribution function in this area.

We will unlimitedly reduce the area   5.3.  The probability of hitting a random variable on a given area believing that   5.3.  The probability of hitting a random variable on a given area . In the limit, instead of the probability of hitting the plot, we obtain the probability that the value will take a separately taken value   5.3.  The probability of hitting a random variable on a given area :

  5.3.  The probability of hitting a random variable on a given area . (5.3.2)

The value of this limit depends on whether the function is continuous.   5.3.  The probability of hitting a random variable on a given area at the point   5.3.  The probability of hitting a random variable on a given area or suffers a break. If at   5.3.  The probability of hitting a random variable on a given area function   5.3.  The probability of hitting a random variable on a given area has a gap, the limit (5.3.2.) is equal to the value of the function jump   5.3.  The probability of hitting a random variable on a given area at the point   5.3.  The probability of hitting a random variable on a given area . If the function   5.3.  The probability of hitting a random variable on a given area at the point   5.3.  The probability of hitting a random variable on a given area is continuous, then this limit is zero.

In the following presentation, we will agree to call "continuous" only those random variables whose distribution function is continuous everywhere. With this in mind, we can formulate the following statement:

The probability of any single value of a continuous random variable is zero.

Let us dwell on this position in somewhat more detail. In this course, we have already met with events whose probabilities were zero: these were impossible events. Now we see that not only impossible, but also possible events can have zero probability. Really an event   5.3.  The probability of hitting a random variable on a given area consisting in that continuous random variable   5.3.  The probability of hitting a random variable on a given area will take value   5.3.  The probability of hitting a random variable on a given area Perhaps, however, its probability is zero. Such events - possible, but with zero probability - appear only when considering experiments that are not reducible to the scheme of cases.

The notion of an event “possible, but having a zero probability” seems at first glance paradoxical. In fact, it is no more paradoxical than the idea of ​​a body having a certain mass, whereas none of the points inside the body has a definite final mass. An arbitrarily small volume isolated from the body has a certain final mass; this mass approaches zero as the volume decreases and is zero in the limit to the point. Similarly, with a continuous probability distribution, the probability of hitting an arbitrarily small segment may be non-zero, whereas the probability of hitting a strictly defined point is exactly zero.

If an experience is produced in which a continuous random variable   5.3.  The probability of hitting a random variable on a given area must take one of its possible values, then prior to experience the probability of each of these values ​​is zero; however, in the outcome of the experiment the random variable   5.3.  The probability of hitting a random variable on a given area will certainly take one of its possible values, i.e., one of the events will obviously occur, the probabilities of which were equal to zero.

From what event   5.3.  The probability of hitting a random variable on a given area has a probability equal to zero, does not follow at all that this event will not appear, i.e. that the frequency of this event is zero. We know that the frequency of an event with a large number of experiments is not equal, but only approaches the probability. From the fact that the probability of an event   5.3.  The probability of hitting a random variable on a given area is equal to zero, it follows only that with unlimited repetition of experience this event will appear as rarely as desired.

If an event   5.3.  The probability of hitting a random variable on a given area in this experience it is possible, but it has a probability equal to zero, then the opposite event   5.3.  The probability of hitting a random variable on a given area has a probability equal to one, but unreliable. For continuous random variable   5.3.  The probability of hitting a random variable on a given area at any   5.3.  The probability of hitting a random variable on a given area event   5.3.  The probability of hitting a random variable on a given area has a probability equal to one, but this event is not reliable. Such an event with unlimited repetition of experience will occur almost always, but not always.

In n ° 5.1, we became acquainted with the “mechanical” interpretation of a discontinuous random variable as a unit mass distribution concentrated in several isolated points on the x-axis. In the case of a continuous random variable, the mechanical interpretation is reduced to the distribution of a unit mass not at individual points, but continuously along the abscissa, and no single point has a finite mass.

created: 2017-07-02
updated: 2024-11-14
36



Rating 9 of 10. count vote: 2
Are you satisfied?:



Comments


To leave a comment
If you have any suggestion, idea, thanks or comment, feel free to write. We really value feedback and are glad to hear your opinion.
To reply

Probability theory. Mathematical Statistics and Stochastic Analysis

Terms: Probability theory. Mathematical Statistics and Stochastic Analysis