Theorem.
From any point not lying on this straight line, you can drop perpendicular to this straight line, and only one.
Evidence
Let a be a given straight line and a point A. which is not lying on this straight line. Let us draw a straight line c through it to some point of a straight line perpendicular to it. The line c intersects the line a at point C. Now we draw the line parallel to line b, so that line b passes through point A. Then line b ⊥ a, since b || with and with ⊥ a.
Hence the segment AB ⊥ a.
Now we prove the uniqueness of the perpendicular AB.
Suppose there is also a perpendicular passing through point A to the line a.
Then the triangle ABD will have two angles of 90 °. And this can not be, since the sum of all angles in a triangle is 180 °. The theorem is proved
Comments
To leave a comment
Planometry
Terms: Planometry