You get a bonus - 1 coin for daily activity. Now you have 1 coin

Logarithmic frequency characteristics of dynamic links

Lecture



When considering and comparing the frequency characteristics of amplitude and phase-frequency for devices of various types, the problem of their compact representation arises, since the values ​​of amplitudes and frequencies (see Fig. 1) differ significantly from each other. In addition, the value of the frequency range itself, in which the characteristics of a particular device are of interest, can be quite significant, from fractions of a hertz to tens of megahertz.

  Logarithmic frequency characteristics of dynamic links

Fig. one

The solution to this problem lies in the use of logarithmic scales in frequency characteristics.

For the first time, they turned to logarithmic scales in communication technology, since they consider objects, both with large gain factors, and objects, which are characterized by a significant attenuation of signals.

The communication technique uses the concept of power transmission coefficient for a four-port network shown in fig. 2,

  Logarithmic frequency characteristics of dynamic links

Fig. 2

  Logarithmic frequency characteristics of dynamic links .

A significant range of variation of this coefficient and forced to use the logarithmic representation, the logarithmic transfer coefficient for power -

  Logarithmic frequency characteristics of dynamic links

(one)

The logarithmic gain in power is measured by special units, which are called Bell (B).

1 Bell corresponds to a power increase of 10 times.

The most commonly used unit is ten times smaller - decibels (dB).

  Logarithmic frequency characteristics of dynamic links .

When determining the logarithmic coefficient in decibels, the expression (1) takes the form -

  Logarithmic frequency characteristics of dynamic links .

The logarithmic gain can be expressed in terms of the ratio of the output and input voltages with the same load resistances   Logarithmic frequency characteristics of dynamic links

  Logarithmic frequency characteristics of dynamic links .

This representation of the gain is used in the theory of automatic control to measure the amplitude of the frequency response in decibels -

  Logarithmic frequency characteristics of dynamic links

(2)

The frequency axis in the theory of automatic control also uses a logarithmic scale based on the decimal logarithm of frequency.

In this case, the frequency axis will have the following form -

  Logarithmic frequency characteristics of dynamic links

Fig. 3

The frequency change is ten times called decade. Moreover, on the frequency axis, at its logarithmic scale, it is customary to denote frequency values ​​in rad / s, sometimes in hertz, this is especially accepted in radio engineering and in engineering practice.

We especially note that the logarithmic scale does not have a zero and can intersect the vertical axis in any place, which is especially important in that it makes it possible to consider the frequency properties of dynamic links and specific devices in the required frequency range, where the characteristic is of interest to the researcher.

Now we give the definition of logarithmic frequency characteristics.

The logarithmic amplitude frequency response (LAFC) of a dynamic link refers to such a representation of the amplitude frequency response (AFC), in which the modulus (amplitude) of the frequency response is expressed in decibels, and the frequency on a logarithmic scale.

The logarithmic phase frequency response (LPCh) of a dynamic link is called such a representation of the phase frequency response (PFC), in which the frequency is expressed on a logarithmic scale.

Quite often, LAFC and LPCHH are built on the same graph in order to give a complete picture of the properties of an object, we will show in Fig. 4 approximate appearance and design LAFH and LFCHH some inertial object.

  Logarithmic frequency characteristics of dynamic links

Logarithmic frequency characteristics of elementary dynamic links

Instant link

Transmission function -

  Logarithmic frequency characteristics of dynamic links .

Frequency response -

  Logarithmic frequency characteristics of dynamic links ,

Frequency response and phase response

  Logarithmic frequency characteristics of dynamic links .

Logarithmic characteristics

  Logarithmic frequency characteristics of dynamic links

  Logarithmic frequency characteristics of dynamic links

Differentiator link

Transmission function -

  Logarithmic frequency characteristics of dynamic links .

Frequency response -

  Logarithmic frequency characteristics of dynamic links ,

Frequency response and phase response

  Logarithmic frequency characteristics of dynamic links .

Logarithmic characteristics

  Logarithmic frequency characteristics of dynamic links

For convenience of construction, we define the point where LAFC intersects the frequency axis -

  Logarithmic frequency characteristics of dynamic links .

Determine the slope LAFC

  Logarithmic frequency characteristics of dynamic links ,

that is, we obtain that LAFC receives an increment of 20 dB over the frequency range of 1 decade.

  Logarithmic frequency characteristics of dynamic links

Integrating link

Transmission function -

  Logarithmic frequency characteristics of dynamic links .

Frequency response -

  Logarithmic frequency characteristics of dynamic links ,

Frequency response and phase response

  Logarithmic frequency characteristics of dynamic links .

Logarithmic characteristics

  Logarithmic frequency characteristics of dynamic links

For convenience of construction, we define the point where LAFC intersects the frequency axis -

  Logarithmic frequency characteristics of dynamic links .

Determine the slope LAFC

  Logarithmic frequency characteristics of dynamic links ,

that is, we obtain that LAFC receives a decrease of 20 decibels over the frequency range of 1 decade.

  Logarithmic frequency characteristics of dynamic links

Test questions and tasks

    1. Give a definition of 1 Bell.

    2. How is the log power gain calculated for quadrupoles?

    3. What defines the concept of "decade" in relation to logarithmic frequency characteristics?

    4. Give a definition of the logarithmic amplitude frequency response.

    5. Give a definition of the logarithmic amplitude frequency response.

    6. List the main advantages of logarithmic frequency characteristics in comparison with usual frequency characteristics.

    7. Link Transfer Function -

  Logarithmic frequency characteristics of dynamic links ,

How does it depend on the frequency LACH of this link? Determine the LAFC of this link.

Answer :

LAFH does not depend on the frequency

  Logarithmic frequency characteristics of dynamic links .

    1. Link Transfer Function -

  Logarithmic frequency characteristics of dynamic links ,

Determine the value LAFC of this link at a frequency   Logarithmic frequency characteristics of dynamic links .

Answer :

  Logarithmic frequency characteristics of dynamic links .

    1. Link Transfer Function -

  Logarithmic frequency characteristics of dynamic links ,

Determine the slope LAFC of this link.

Answer :

The slope of LAFC of this link is   Logarithmic frequency characteristics of dynamic links .


Comments


To leave a comment
If you have any suggestion, idea, thanks or comment, feel free to write. We really value feedback and are glad to hear your opinion.
To reply

Mathematical foundations of the theory of automatic control

Terms: Mathematical foundations of the theory of automatic control