You get a bonus - 1 coin for daily activity. Now you have 1 coin

Industrial Robotics

Lecture



Introduction

Industrial robotics is one of the new areas of automation of production processes, the beginning of development, which in our country belongs to the last decade. An integrated approach to the solution of technical, economic and social tasks associated with the introduction of their industrial robots (PR), has freed up about 2,000 workers. In the process of creating, producing and introducing PR, we had to deal with a number of complex scientific and technical problems. Received a lot of experience in the development of robotic systems (RTK) and the organization of automated production based on the PR. All these issues, which are reflected in the proposed book, are, in our opinion, of considerable interest to a wide range of specialists, designers and production workers of various industries, who are currently engaged in work to increase production and widespread use of PR in all sectors of the economy. and for all professionals working in the field of automation of production processes.

The modern stage of the scientific and technological revolution is characterized by the integrated automation of production based on machine-machine systems. Until recently, specialized automatic machines and automatic lines, irreplaceable in mass production, but unprofitable in the conditions of serial and small-scale production due to the high cost, as well as the duration of development, implementation and transfer to their new products, were mainly used. Traditional manually operated equipment provides sufficient production flexibility, but requires the use of skilled labor of workers and has low productivity.

Over the past decades, the automation of basic technological operations (shaping and changing the physical properties of parts) has reached such a level that auxiliary operations associated with transporting and storing parts, unloading and loading process equipment, performed manually or using existing means of mechanization and automation, act as a brake in increasing productivity, and in the further development of technology. Using conventional methods, it is impossible to automate assembly, welding, painting and many other operations using conventional methods. All this led to sharp contradictions between the perfection of industrial equipment and the nature of labor in its use, the need for labor resources and their actual availability, the requirements of intensification of production processes and limited human psycho-physiological capabilities. These social, economic and technical reasons, which became the main constraints in the development of production and further increase in labor productivity, as well as modern advances in the creation of production tools, computing equipment and electronics led to the rapid development of robotics - the industry that created and produces new automatic machines - industrial robots. According to the developers, these machines are designed to replace people with health-threatening, physically heavy and tediously monotonous handicrafts. They received their name due to the idea of ​​modeling the motor, control and, to some extent, adaptive functions of workers employed in repetitive labor operations of unloading-loading technological equipment, control of the operation of this equipment, inter-operational movement and storage of parts, as well as on various assembly, welding, painting and other operations performed with the use of portable tools.

Industrial robots (PR) turned out to be the missing link, the appearance of which made it possible to solve complex automation tasks at a higher level, combining the means of production of the enterprise into a single automated complex.

1 . Basics of Robotics

The closest-in-use prototypes for PRs were autooperators and mechanical arms that have been used in industry for a long time but do not satisfy production workers due to their narrow specialization, poor readability, a small number of functions performed and limited (mass and large-scale production) application areas. The disadvantages inherent in these prototypes in the designs of PR were largely eliminated by increasing their handling capabilities, providing their own drive system and software control system. Due to this, the created devices have acquired qualitatively new properties: autonomy in the sense of non-integration into the process equipment and the ability to work automatically according to a given program; universality, i.e. the ability to move in space objects of various types along complex spatial trajectories, interfacing with a sufficiently large number of types of technological equipment and good readability for various alternating types of work.

Currently, a robot is an automatic program-controlled manipulator. Depending on the human participation in the robot control processes, they are divided into biotechnical and autonomous, or automatic ones.

Biotech robots include remote-controlled copy robots; exoskeletons; human-controlled robots from the control panel; semi-automatic robots.

Remotely controlled copying robots are provided with a master body (for example, a manipulator completely identical to the executive), means of transmitting direct and feedback signals and means of displaying information for the human operator about the environment in which the robot functions.

Exoskeletons are made in the form of anthropomorphic structures, usually "worn" on the arms, legs or body of a person. They serve to reproduce the movements of a person with some necessary effort and sometimes have several dozen degrees of mobility.

Human-controlled robots from the control panel are equipped with a system of handles, keys, or buttons associated with the actuators of the control channels in different generalized coordinates. On the remote control set the means of displaying information about the environment of operation of the robot, coming to a person via radio communication.

Semi-automatic robot is characterized by a combination of manual and automatic control. It is equipped with a supervisory control for human intervention in the process of autonomous functioning of the robot by providing it with additional information by specifying a target, a sequence of actions, etc.

Autonomous or automatic control robots are usually divided into production and research robots, which, after creation and adjustment, can in principle function without human intervention.

By scopes, production robots are divided into industrial, agricultural, transport, construction, household, etc.

For a short period of development of robots, major changes have occurred in the elemental base, structure, functions, and nature of their use. This led to the division of robots into generations.

Robots of the first generation (software robots) have a strict program of actions and are characterized by the presence of elementary feedback with the environment, which causes certain restrictions in their use.

Robots of the second generation (sensitized robots) have the coordination of movements with perception. They are suitable for low-skilled labor in the manufacture of products. The robot's motion program requires a control computer for its implementation.

An integral part of second-generation robots is algorithmic and software designed to process sensory information and generate control actions.

Third generation robots are robots with artificial intelligence. They create conditions for a complete replacement of a person in the field of skilled labor, have the ability to learn and adapt in the process of solving production problems. These robots are able to understand the language and conduct a dialogue with a person, form an external environment model with varying degrees of detail, recognize and analyze difficult situations, form concepts, plan behavior, build executive movements of the executive system and implement their reliable development.

The appearance of robots of different generations does not mean that they consistently replace each other. In the process of development, the functional capabilities and technical characteristics of robots of different generations are improved.

The first generation of robots usually include industrial robots. By the number of PR implemented, our country occupies one of the leading places in the world.

The block diagram of the PR is a complex structure (Fig. 1), including a number of systems: mechanical, control drives, communication with the operator, information, as well as an operating device.

Figure 1- Block diagram of an industrial robot.

The mechanical system is performed, as a rule, in the form of a manipulator having several degrees of mobility, mounted on a fixed or mobile

basis; it provides movement of the working body with a certain load. The shape and dimensions of the manipulator are determined by the type and characteristics of the technological process for which it is intended. The created models of PR are essentially multi-axis manipulators with program control, programmed on the first cycle. Their control systems, in addition to the basic functions for controlling the movement of the manipulator's working units, provide signals to the serviced equipment, receive signals from the simplest sensors of external information, which work according to the Yes-No principle, and use these signals to select one or another work program from among those specified by the operator . The presence of the external control loop significantly expanded the areas of application of the created PR, as it allowed using them in relation to the automated process not only as universal manipulators, but also as control devices. The presence of sensors and corresponding electronic circuits of external information gave this PR a fundamentally new ability to adapt to changing working conditions.

The drive for each of the coordinates of the PR provides a force on the corresponding mechanism that performs the specified movement. The drive is an automatic system, the input signal of which is the deterministic action of the control system, and the output signal is the mechanical movement.

The development of the type of PR, which is essential for the organization of their production, research and development work has not yet been completed. Currently the most developed type of PR is the first generation. For example, in the machine-tool and tool industry, according to the structure, the type of this PR is divided into the following groups and subgroups: universal PR servicing various technological equipment and performing various basic technological operations; Targeted OL of a lift-and-transport group (multi-purpose), serving various technological equipment, carrying out transport-warehouse and special works; target PR of the production group (multi-purpose) to perform various technological operations of welding, cleaning and preparation of parts, painting and coating, disassembly, control, measurement, rejection, marking and assembly.

2. The main tasks

Consider the specific tasks that robots currently solve at industrial enterprises. They can be divided into three main categories:

- manipulations with blanks and products

- processing using various tools

-assembly.

2.1 Manipulations of products and blanks

For handling and transport operations, the robot replaces a pair of human hands. His responsibilities do not include particularly complex procedures. He only repeats one and the same operation many times in accordance with the program laid down in him (the robot). Consider the typical applications of such robots.

2.1.1 Handling

In many branches of the engineering industry, casting, cutting and forging installations are used. In most cases, the sequence of operations they perform is quite simple. First, blanks are loaded into a production plant, which then processes them in a strictly defined manner, and, finally, finished parts are removed from it. Loading and unloading, as a rule, are carried out by workers or, in cases where rigid automation tools are used, specialized mechanisms designed for operations of only one type. Robots can be useful here if the nature of such handling operations changes from time to time.

For example, in the foundry industry, robots are used both for the dosed casting of molten aluminum, and for extracting solidified castings from the mold and cooling them. This approach has two advantages. first of all, robots guarantee a stricter observance of the requirements of the technological process: acting and in accordance with a given program, they always enter into the installation a precisely dosed amount of metal. Then, in strictly defined moments of time, they extract molded parts from it. Thanks to the exact observance of the technological process, the characteristics of the products are strictly observed.

The second advantage of this approach is that the operator’s work is greatly facilitated. Removing a hot piece of metal from the mold is one of the few attractive jobs, and it is desirable that it be performed by a robot. Thus, the role of man is reduced to controlling the process and controlling the actions of the robot using a computer.

2.1.2 Transferring products from one production plant to another

In many branches of the engineering industry, loading and unloading mechanisms are designed to move products from one production site to another. And when performing such movements robots play an important role.

Robots load magnetic disks into the system at IBM's Piquipsi (New York) factory, which manufactures computers, where the necessary information is recorded on them. The program that controls the robot contains instructions as to which of the four settings for recording to load one or another “empty” disk. In addition, the program specifies a specific set of commands that the appropriate installation should put on the disk. The same robot carries out two other stages of this technological process. He removes the disc from the recording installation and places it in a device that presses a self-adhesive label to the surface of the disc with a jet of compressed air. Then the robot takes out the disk with a gripping device and packs its envelope.

Such a robot is designed and implemented in an English automotive plant. It moves on tracks between the five manufacturing sites of the plant. The robot removes the plastic part of the car from the installation for injection molding and consistently transfers the part to the finishing areas where burrs and burrs are removed from it. Next, the robot places the part on a specialized machine that polishes it. Finally, the part is moved from the polishing machine to the conveyor.

2.1.3 Packaging

Virtually all household and industrial goods must be packaged, and for robots it is not difficult to lift finished products and place them in any container.

At the factories of one of the confectionery firms in England, specialized robots are engaged in packing candies in boxes. These machines are very complex and perfect. First, they handle products very carefully: squeezing a chocolate product, they can disrupt its shape or crush it. Secondly, the robot observes high accuracy when putting candies in boxes, placing them in certain cells of the box.

2.1.4 Loading heavy objects on a conveyor or pallets

Помимо упаковки миниатюрных изделий, а также промышленных и бытовых товаров роботы иногда выполняют и погрузку тяжелых предметов. По существу они здесь заменяют подъемно-транспортные машины, управляемые оператором-человеком.

2.2 Обработка деталей и заготовок

Хотя роботы, выполняющие обработку изделий с помощью различных инструментов и нашли пока менее широкое применение, чем аналогичное оборудование для транспортировки деталей и заготовок, они про-демонстрировали свою эффективность при решении многих задач.

2.2.1 Сварка

Эта операция чаще всего выполняется с помощью роботов , предназначенных для манипулирования инструментом . роботы могут осуществлять два вида сварки : точечную контактную и дуговую . В обоих случаях робот удерживает сварочный пистолет , который пропускает ток через две соединяемые металлические детали .

В соответствии с управляющей программой сварочный пистолет может перемещатся практически не отклоняясь от заданной траектории . И если программа отлаженна хорошо , сварочный пистолет прокладывает шов с очень высокой точностью .

Большинство роботов для точечной сварки применяется в автомобильной промышленнсти. При сборке автомобиля необходимо выполнить огромное количество операций точечной сварки , чтобы надлежащим образом соединить между собой различные детали кузова, например боковины, крышу и капот. На современных конвейерах эти детали вначале соединяются временно несколькими прихваточными сварными соединениями . Далее кузов перемещается по конвейеру мимо группы роботов, каждый из которых осуществляет сварку встрого определенных местах. Поскольку все кузова, монтируемые на одной производственной линии , для получения высококачественных соединений просто требуется , чтобы робот каждый раз повторял заданную последовательность перемещений .

При очевидных преимуществах такого использования роботов существует ряд и серьезных технических проблем. Запрограммировать робот весьма непросто. Необходимо не только задать точный маршрут движения манипулятора, но и подготовить инструкции, в соответствии с которыми регулируется напряжение и сила тока в каждой точке маршрута. А эти параметры могут меняться, например, в зависимости от толщины свариваемого материала или от того, какую форму имеет прокладываемый шов - прямую или криволинейную.

Также необходимо сконструировать фиксаторы , удерживающие детали в процессе сварки таким образом, чтобы сварка осуществлялась при высокой точности позиционирования. Когда сварочный пистолет держит человек , он способен учитывать незначетельные смещения заготовки. Сварщик-человеку лишь слегка сместит инструмент, с тем чтобы выполнить шов в заданном месте . Робот же не способен принимать подобные решения , если фиксаторы допускают перекос или смещение, то существует вероятность того ,что сварные швы будут расположенны с отклонением. Кроме того, фиксатор должен быть таким, чтобы манипулятор имел доступ к детали с разных сторон.

Следующая проблема касается допусков на изготавливаемые детали. Сварщик-человек принимает во внимание неизбежные отклонения в размерах, но роботу подобная коррекция не под силу. Таким образом, когда сварка осуществляется с помощью автоматики, допуски на детали, изготавливаемые на других участках предприятия, должны быть минимальными.

Характер воздействия, которое роботы оказывают на другие этапы производственного процесса (весьма вероятно , что оно приведет к тесной привязке всех технологических операций ), называется “принципом домино” в робототехнике.

2.2.2 Обработка резаньем

2.2.2.1 Сверление

Как правило операцию сверления осуществляют на станке. При использовании робота в его захватном приспособлении закрепляется рабочий инструмент , который перемещается над поверхностью обрабатываемой детали , высверливая отверстия в нужных местах . Преимущество подобной процедуры проявляется в тех случаях , когда приходится работать с крупногабаритными и массивными деталями или проделывать большое число отверстий.

Операции сверления играют значительную роль в производстве самолетов: они предшествуют клепке, при которой в отверстия вставляются миниатюрные зажимные детали, скрепляющие между собой два листа металла. В деталях самолетов необходимо проделывать сотни, а то и тысячи отверстий под заклепки, и вполне естественно , что такую операцию поручили роботу .

Английская компания изготавливает детали механизма бомбосбрасывания, предназначенного для истребителя “Торнадо”. Механизм представляет собой цилиндрическую конструкцию длиной примерно 6м, к которой требуется приклепать кожух из восьми металлических панелей. В кожухе необходимо просверлить около 3000 отверстий под заклепки. Проблема заключалась в том, как добиться, чтобы робот, оснащенный высокоскоростной сверлильной головкой , проделывал отверстия точно в заданных местах .

Инженеры пришли к выводу, что данную проблему можно решить следующим образом: рабочий просверливает ряд эталонных отверстий (примерно через метр друг от друга) вдоль панелей , которые размещаются надлежащтм образом поверх цилиндрической конструкции . Манипулятор с закрепленным в его зажиме сенсорным зондом (а не сверлом) перемещается над поверхностью заготовки , посылая в память робота данные о местонахождении эталонных отверстий . Затем робот расчитывает точные координаты остальных отверстий , исходя из этих базовых точек . Затем робот , завершив операцию сверления , удаляет оставшиеся в отверстиях крошечные частицы металла специальным инструментом.

2.2.2.2 Бесконтактная обработка заготовок

Из-за малой жесткости и недостаточной твердости, роботы не могут проводить обработку твердых материалов резаньем. Поэтому инженеры изучают бесконтактные методы обработки материалов, подобных металлу или пластику. Для этой цели, в частности, используется лазер. В рабочем органе робота закреплен прибор , который направляет высокоэнергетическое когерентное излучение лазера (для чего нередко используется волокно-оптическая система передачи) на обрабатываемую заготовку . Лазер может с высокой точностью резать пластины из металла, в частности стали. Робот перемещает рабочий орган над обрабатываемым листовым материалом по траектории, определяемой программой. Программой же регулируется интенсивность светового луча в соответствии с толщиной нарезаемого материала .

Другой бесконтактный метод резанья основан на использовании струи жидкости. Такой подход впервые применила компания “Дженерал моторс”. На ее заводе в Адриане установлена система с 10 роботами, изготавливающая пластмассовые детали нефтеналивных цистерн. Восемь из десяти роботов напрявляют водяные струи под высоким давлением на перемещаемые конвеером пластмассовые листы. Эти струи прорезают в исходном материале ряд отверстий и щелей, а также удаляют лишние элементы пластмассовых прессованых деталей. по утверждению представителей компании “Дженерал моторс”, подобная роботизированная система весьма экономична , поскольку исключает износ инструмента и позволяет повысить качество операций резанья. Поскольку система управляется программой, которая находится в памяти центрального компьютера, для контроля и обслуживания всех 10 роботов требуется только два оператора.

2.3 Нанесение различных составов на поверхность

На большенстве предприятий после таких операций, как резанье, производится обработка поверхности только что изготовленных деталей (чаще всего окраска). Это еще один тип производственных операций , которые способен выполнять робот если его оснастить пульверизатором. В память робота закладывается программа, обеспечивающая выполнение определенной, многократно повторяемой последовательности перемещений. Одновременно программа регулирует скорость разбрызгивания краски. В результате на поверхности окрашиваемой детали образуется равномерное покрытие, причем нередко робот обеспечивает более высокое качество окраски, чем человек, которому свойственна неточность движений. Среди других процедур обработки поверхности можно отметить напыление антикоррозийных жидкостей на листы металла для защиты их от химического или физического воздействия окружающей среды, а также нанесение клеевых составов на поверхность деталей подлежащих соединению. Автомобилестроительные компании исследовали возможность применения последней операции на этапе окончательной “подгонки” готовых узлов, в частности при монтаже таких элементов, как хромовые вкладыши на кузове автомобиля. При выполнении подобных операций робот помещают в оболочку, которая защищает его от попадания клея и других связующих веществ. Его также можно “обучить” тому, чтобы он время от времени самостоятельно очищался, погружая захватное приспособление в очищающую жидкость.

2.4 Чистовая обработка

Самой “непопулярной” операцией в механообработке , которая к тому же труднее потдается автоматизации, является, пожалуй, удаление заусенцев, посторонних частиц и зачистка.

Такая чистовая обработка-весьма непростая процедура. Рабочий подносит обрабатываемую деталь к абразивному инструменту , который стачивает острые края и шероховатости на поверхности изделия . Данная процедура занимает важное место в технологическом процессе , однако выполнять ее вручную весьма непросто.

Возможности использования роботов для окончательной обработки изделий исследовались во многих странах. Основная трудность здесь состоит в том, что роботы не обладают естественной для человека способностью контролировать качество своей работы, робот не может менять последовательность своих действий, если он не снабжен соответствующими датчиками. Английская фирма, специализирующаяся на изготовлении соединительных элементов водопроводных труб, осуществила проект, который позволил оснастить робот простейшей системой машинного“ зрения в виде телевизионной камеры. Предположим, робот держит какую-то деталь, например латунный водопроводный кран; телекамера передает изображение крана в компьютер, который в свою очередь регулирует прижатие шлифовального ремня, стачивающего неровности на поверхности этой литой детали. Кроме того, компьютер управляет перемещением манипулятора робота. Таким образом, действия всех компонентов системы - телекамеры, основного манипулятора, регулирующего прижатие шлифовального ремня,-взаимно скоординированны.

2.5 Testing and control

After a part has been manufactured or several assemblies have been mounted, they are usually tested in order to identify possible defects. The linear dimensions of parts are subject to careful control. All measurement operations are part of everyday tasks solved in all enterprises of the world. Robots can facilitate their implementation. For this purpose, robots are equipped with miniature optical sensors; As a rule, these are light-emitting diodes combined with semiconductor photosensitive devices. By irradiating the surface to be tested with a beam of a certain frequency, such a sensor receives the radiation reflected from the surface, which has the same frequency. The robot, in accordance with the program laid down in it, moves the sensor from one point of the tested product to another. According to the results of measuring the time interval between the moment of emission of a light pulse and its reception after reflection, the shape of the surface to be tested is calculated. All these actions are performed by the computer of this automated system.

This kind of operation avoids the use of tools such as micrometers and calipers. Such robotic tools were first used by General Motors to control the shape and size of automotive parts. When using such a robotic system, there is no need to send products to special points of quality control - the relevant procedures can be carried out directly on the conveyor, without interrupting the production process.

2.6 Build

A large amount of work on modern enterprises accounts for assembly operations, but many of them require particular skill and are too complex for a machine. In this regard, a significant part of the assembly is still performed manually. However, a number of assembly processes are already automated; this applies mainly to relatively simple and repetitive operations.

Using the example of IBM, we can follow the experiments on the use of robots in assembly processes. This largest company for the production of computers not only sells robots intended for assembly, but also uses them at its own enterprises in many countries. At the plant of this company in Greenock (Scotland), they are developing “islands of automation” - complexes containing a large number of computerized mechanisms that assemble the products with minimal human involvement. According to IBM specialists, as a result of automation, the annual output of the company grew 10-fold compared with 1974, while the number of employees at it remained almost unchanged.

One of these “Ostravki” is a production line on which logical blocks with power stages are manufactured. The line includes processors and power supplies for displays that are part of microcomputers. Four components are assembled on the line: Two parts of the plastic case of the device, an electrical circuit block and a plastic board with a chipset mounted on it.

For the installation of each unit, only two screws are screwed, which are fed into the working bodies of the robots by special mechanisms - feeders. The robots themselves insert screws into the corresponding holes of the product. To manage the entire production line is enough five people. According to IBM, to manufacture the same number of devices using traditional methods of manual assembly would require four times as many workers.

There is a tendency to create connections, within the enterprise, between automatic assembly systems like those described above. For example, with the help of automatic vehicles that move products that are at certain stages of readiness.

2.7 PCB Mounting

Another industry where assembling robots could find widespread use is the assembly of electronic components on printed circuit boards. Some of these operations can perform specialized assembly complexes, however, in essence, they are manipulators designed to solve strictly defined tasks; they cannot be programmed in such a way that they perform any other operations or manipulate non-standard components. Therefore, when using such installations designed for highly specialized installation, sets of components of a standard form are loaded into the accumulative troughs of multi-cell stores, similar to the cartridge belt. These stores move past a mechanical grip, which in turn removes components from there and sets them in the right places on the board.

Conclusion

As the experience of introducing robotics has shown, it is a new form of technical and organizational cell that most fully meets the needs of modern production. Robotics is a flexible, economical and rational form of processing parts and products of higher cost and better quality in medium and small batches. Robotics realizes the desire to reduce human tension in the work associated with the need to adapt to the machine cycle, leads to the replacement of conveyor lines assembly teams, based on the management team based in a row.

References

  1. Shahinpur M. The course of robotics: Trans. from English - M .; World, 1990.

527 s., Silt.

  1. Popov E.P., Pismenny G.V. Basics of Robotics: Introduction to the specialty: Textbook. for universities on spec. “Robotic systems and complexes” - M .: Higher. school., 1990. - 224 p., il.
  2. Kochyuk V.I., Gavrish A.P., Karlov A.G. Industrial robots: Castration, control, operation: Vishcha. wk Head Publishing, 1985.
  3. Fu K., Gansales F., Lick K. Robotics: Translated from English. - M. Mir; 1989. - 624., Il.
  4. Babich A.V., Baranov A.G., Kalabin I.V. and others. Industrial robotics: Edited by Shifrina Ya.A. - M .: Mashinostroenie, 1982 - 415 pp., Ill.

……………… .. - ……….

created: 2014-08-21
updated: 2024-11-14
321



Rating 9 of 10. count vote: 2
Are you satisfied?:



Comments


To leave a comment
If you have any suggestion, idea, thanks or comment, feel free to write. We really value feedback and are glad to hear your opinion.
To reply

Robotics

Terms: Robotics