Lecture
Fig. 3.1. Two-dimensional designation black box models on diagrams |
If a black box has, for example, two inputs, and the dependence of the output on the inputs resembles a quadratic one, then it is advisable to choose the following hypothesis:
Y = A 0 + A 1 · X 1 + A 2 · X 2 + A 3 · X 1 · X 2 + A 4 · X 1 · X 1 + A 5 · X 2 · X 2 .
Denote: Z 1 = X 1 · X 2 ; Z 2 = X 1 · X 1 ; Z 3 = X 2 · X 2 and substitute these expressions in the previous formula:
Y = A 0 + A 1 · X 1 + A 2 · X 2 + A 3 · Z 1 + A 4 · Z 2 + A 5 · Z 3 .
Thus, this task is reduced to a linear multiple model. And the black box model now looks like the one shown in fig. 3.2.
Fig. 3.2. Converted black box model |
Fig. 3.3. Designation of a multi-dimensional model black box diagrams |
Y = A 0 · X 1 A 1 · X 2 A 2 ·… · X m A m .
Let us count the left and right sides of this equation:
ln ( Y ) = ln ( A 0 ) + A 1 · ln ( X 1 ) + A 2 · ln ( X 2 ) +… + A m · ln ( X m ).
Denote:
W = ln ( Y ), B 0 = ln ( A 0 ), Z 1 = ln ( X 1 ), Z 2 = ln ( X 2 ), ..., Z m = ln ( X m ).
We get:
W = B 0 + A 1 · Z 1 + A 2 · Z 2 +… + A m · Z m .
That is, the transition to a linear multiple model is again made.
Fig. 3.4. Designation of a multi-dimensional model black box diagrams |
Y = k / ( A 0 + A 1 X 1 + ... + A m X m ).
Replace: W = 1 / Y , a i = A i / k . And we turn to the linear multiple model:
W = a 0 + a 1 · X 1 +… + a m · X m .
Fig. 3.5. Designation of a multi-dimensional model black box diagrams |
Y = e B 0 + B 1 X 1 + B 2 X 2 + ... + B m X m .
Let us count the left and right sides of the equation:
ln ( Y ) = B 0 + B 1 · X 1 + B 2 · X 2 +… + B m · X m .
Perform the replacement W = ln ( Y ) and get:
W = B 0 + B 1 · X 1 + B 2 · X 2 +… + B m · X m .
Next, we use the expression for the linear multiple model.
Comments
To leave a comment
System modeling
Terms: System modeling