You get a bonus - 1 coin for daily activity. Now you have 1 coin

Nonlinear regression models

Lecture



Polynomial Multiple Regression Model

  Nonlinear regression models
Fig. 3.1. Two-dimensional designation
black box models on diagrams

If a black box has, for example, two inputs, and the dependence of the output on the inputs resembles a quadratic one, then it is advisable to choose the following hypothesis:

Y = A 0 + A 1 · X 1 + A 2 · X 2 + A 3 · X 1 · X 2 + A 4 · X 1 · X 1 + A 5 · X 2 · X 2 .

Denote: Z 1 = X 1 · X 2 ; Z 2 = X 1 · X 1 ; Z 3 = X 2 · X 2 and substitute these expressions in the previous formula:

Y = A 0 + A 1 · X 1 + A 2 · X 2 + A 3 · Z 1 + A 4 · Z 2 + A 5 · Z 3 .

Thus, this task is reduced to a linear multiple model. And the black box model now looks like the one shown in fig. 3.2.

  Nonlinear regression models
Fig. 3.2. Converted black box model

Multiplicative regression model

  Nonlinear regression models
Fig. 3.3. Designation of a multi-dimensional model
black box diagrams

Y = A 0 · X 1 A 1 · X 2 A 2 ·… · X m A m .

Let us count the left and right sides of this equation:

ln ( Y ) = ln ( A 0 ) + A 1 · ln ( X 1 ) + A 2 · ln ( X 2 ) +… + A m · ln ( X m ).

Denote:

W = ln ( Y ), B 0 = ln ( A 0 ), Z 1 = ln ( X 1 ), Z 2 = ln ( X 2 ), ..., Z m = ln ( X m ).

We get:

W = B 0 + A 1 · Z 1 + A 2 · Z 2 +… + A m · Z m .

That is, the transition to a linear multiple model is again made.

Reverse regression model

  Nonlinear regression models
Fig. 3.4. Designation of a multi-dimensional model
black box diagrams

Y = k / ( A 0 + A 1 X 1 + ... + A m X m ).

Replace: W = 1 / Y , a i = A i / k . And we turn to the linear multiple model:

W = a 0 + a 1 · X 1 +… + a m · X m .

Exponential model

  Nonlinear regression models
Fig. 3.5. Designation of a multi-dimensional model
black box diagrams

Y = e B 0 + B 1 X 1 + B 2 X 2 + ... + B m X m .

Let us count the left and right sides of the equation:

ln ( Y ) = B 0 + B 1 · X 1 + B 2 · X 2 +… + B m · X m .

Perform the replacement W = ln ( Y ) and get:

W = B 0 + B 1 · X 1 + B 2 · X 2 +… + B m · X m .

Next, we use the expression for the linear multiple model.

created: 2015-12-19
updated: 2024-11-14
191



Rating 9 of 10. count vote: 2
Are you satisfied?:



Comments


To leave a comment
If you have any suggestion, idea, thanks or comment, feel free to write. We really value feedback and are glad to hear your opinion.
To reply

System modeling

Terms: System modeling