You get a bonus - 1 coin for daily activity. Now you have 1 coin

Methods to ensure the high quality of the developed software

Lecture



The concept of testing. The basic principles of testing.

Testing is the process of executing a program to detect errors.

Testing is one of the most labor-intensive stages of creating a software product (from 30% to 60% of the total labor input). Moreover, the proportion of the cost of testing in the total cost of development tends to increase with increasing complexity of program complexes and increasing requirements for their quality.

It is necessary to distinguish between testing and debugging. Testing is the process of detecting failures due to errors in programs. Debugging is the process of identifying sources of failure, i.e. mistakes, and making relevant changes to the program.

Testing helps improve the quality of a software product by helping to identify problems early in the development process. No testing can prove the absence of errors in the program.

The initial data for testing are the specification, specification and structural and functional schemes of the software product developed at the previous stages.

To complete a program check, you need to perform testing. It requires you to check all the sets of source data and all options for their processing. In most cases this is not possible.

When testing it is recommended to observe the basic principles:

1. You can not plan testing on the assumption that errors will not be detected.

2. A test that has a high probability of detecting an unrevealed error is considered good . Successful is the test that detects an error that has not yet been identified .

Let's draw an analogy with visiting a sick doctor. If a laboratory study recommended by a doctor did not find the cause of the disease, then such a study is unsuccessful: the patient has spent money and time, and he is still sick. If the study showed that the patient has a stomach ulcer, then it is successful, because the doctor can prescribe the necessary course of treatment. The analogy here is that the program to be tested is similar to a sick patient.

3. Expected results must be known before testing.

Violation of this principle is one of the most common mistakes. Erroneous, but plausible results can be considered correct if the test results have not been previously determined. Therefore, the test should include two components: a description of the input data and a description of the exact and correct result corresponding to the set of input data.

4. Avoid testing the program by its author.

Most programmers can not effectively test their programs, because it is difficult for them to demonstrate their own mistakes. In addition, the program may contain errors associated with an incorrect understanding of the formulation or description of the problem by the programmer. Then the programmer will start testing with the same misunderstanding of his task.

It does not follow from this that a programmer cannot test his program. Many programmers quite successfully cope with this. But testing is more effective if performed by someone else. This does not apply to debugging, i.e., to the correction of already known errors. Debugging is more efficiently performed by the author of the program.

5. It is necessary to thoroughly study the results of applying each test.

This is the most obvious principle, but due attention is often not given to it. Errors should be detected as a result of a thorough analysis of the results of test runs.

6. It is necessary to check the program for incorrect data. Tests for incorrect and unforeseen input data should be designed as carefully as for the correct and provided.

When testing programs, there is a tendency to focus on the correct and stipulated input conditions, and to ignore incorrect and unforeseen input data. Many errors can be detected if the program is used in a new, not previously provided way. It is likely that tests that represent incorrect input data have a greater detecting power than tests that correspond to the correct input data.

7. It is necessary to check the program for unexpected side effects.

That is, it is necessary to check not only whether the program does what it is intended for, but also whether it does what it should not do.

This logically simply follows from the previous principle. For example, a payroll program that makes the correct payment checks will be wrong if it produces extra checks for workers or twice writes the first entry to the list of personnel.

8. The probability of undetected errors in a part of a program is proportional to the number of errors already found in this part.

This can be explained by the fact that errors can be grouped into parts of the program developed by low-skilled programmers or poorly developed ideologically.

This principle allows you to enter feedback into the testing process. If in any part of the program more errors are detected than in others, then additional efforts should be directed at testing it.

Structural Software Testing

There are 2 main strategies for testing structural programs:

structural testing or “white box testing”;

functional testing or black box testing

3.2.1. Testing the "white box"

The “ white box ” strategy , or the testing strategy managed by the program logic , or structural testing , allows you to explore the internal structure of the program, which in this case is known (Fig. 3.2).

Methods to ensure the high quality of the developed software

Figure 3.2. - Testing the "white box"

Test data is obtained by analyzing the program logic. The correctness of the construction of all program elements and the correctness of their interaction with each other is checked.

White-box testing is characterized by the degree to which tests perform or cover the logic (source code) of a program.

Coverage is a measure of the completeness of using the capabilities of a program by a set of tests.

A program is considered to be fully verified, if using tests it is possible to execute this program along all possible routes for its execution, i.e. perform comprehensive testing of routes . For this, test variants are formed in which:

guaranteed check of all independent routes of the program;

branches of "truth" and "false" for all logical decisions;

all cycles are performed within their boundaries and ranges;

analyzes the correctness of internal data structures.

Disadvantages of the white box testing:

The number of independent routes can be very large. For example, if a cycle in the program is executed k times, and there are n branches within the loop, then the number of routes is calculated using the formula

With n = 5 and k = 20, the number of routes is m = 1014. We assume that 1 ms is spent on developing, executing and evaluating a test on one route. Then, when working 24 hours a day, 365 days a year, it will take 3170 years for testing.

Therefore, exhaustive testing is impossible in most cases.

Even an exhaustive number of routes does not guarantee the compliance of the program with the original requirements for it.

Some routes may be skipped in the program.

The method does not detect errors, the appearance of which depends on the data being processed.

The advantages of testing the "white box" is that this strategy allows you to take into account the features of software errors:

When encoding a program, syntax and semantic errors are possible;

The number of errors is minimal in the "center" and maximum in the "periphery" of the program;

Preliminary assumptions about the likelihood of a control flow or data in a program are often incorrect. As a result, a route can become typical, for which the computation model for which is poorly developed.

Some results in the program depend not on the initial data, but on the internal states of the program.

Each of these reasons is an argument for testing on the "white box" principle. Black Box tests cannot respond to these types of errors.

3.2.2. Black Box Testing

Functional testing or testing with data management , or testing with input-output control . When using this strategy, the program is considered as a black box, i.e. its internal structure is unknown (Fig. 3.3). Such testing is intended to clarify the circumstances in which the behavior of the program does not meet its specifications. The execution of each function of the program is checked over the entire domain.

Methods to ensure the high quality of the developed software

Figure 3.3. - Testing the "black box"

In order to detect all errors in the program, it is necessary to perform exhaustive testing, i.e. testing on all possible sets of input data. As a rule, it is impossible. For example, if the program has 10 input values ​​and each can take 10 values, then 1010 test cases will be required.

The black box principle is not an alternative to the white box principle; it detects other classes of errors. Functional testing does not respond to many software errors.

Testing the “black box” allows you to find the following categories of errors:

The absence of functions or the incorrectness of their performance;

Interface errors;

Errors in external data structures or in access to an external database;

Initialization and completion errors;

Error characteristics (required memory capacity, etc.).

Such categories of errors cannot be identified by the “white box” methods.

Structural Testing Methods

The structured testing strategy includes several testing methods:

operator coverage method;

solution coverage method;

condition coverage method;

solution / condition coverage method;

combinatorial coverage of conditions;

baseline testing method.

3 .3.1. Operator Coverage Method

Coverage is a measure of the completeness of the use of the program component’s capabilities by the test suite.

The operator coverage method uses the operator coverage criterion, which involves executing each program statement at least once. This is a weak criterion, so how to perform each operator once is a necessary but not sufficient condition for acceptable testing on the white box principle.

Methods to ensure the high quality of the developed software

Figure 3.4 - Block diagram of a small program that needs to be tested.

Consider an example. In fig. 3.4 is a block diagram of a small program that needs to be tested.

An equivalent program written in C ++ has the form:

Void m (const float A, const float B, float X)

{if (A> 1) && Bb == 0)

X = X / A;

If ( A == 2) ïï ( X > 1)

X = X +1}

You can run each operator by writing a single test that would implement the ace path . That is, if the values A = 2 , B = 0 and X = 3 were set at point a, each statement would be executed once (in fact, X can take any value).

This criterion is not sufficient, since when using it, some possible errors will not be detected.

If, when writing a program in the first condition, write A > 1 || B = 0 , the error will not be detected.

If in the second condition instead of X > 1 X > 0 is written, then the error will not be detected.

There is an abd path in which X does not change at all. If there is an error, then it will not be detected.

Thus, the operator coverage criterion is so weak that it is used extremely rarely.

3.3.2. Solution Coverage Method

A stronger criterion for covering the logic of a program is the criterion for covering decisions . The solution is a logical function preceding the operator (A > 1 && B = 0 is the solution). To implement this criterion, such a number of tests is necessary so that each decision on these tests takes the value “true” or “false” at least once. In other words, each transition direction must be implemented at least once.

Solution coverage usually satisfies the operator coverage criterion. Since each operator lies on a certain path, outgoing either from the transition operator or from the program entry point, each operator must be executed at each transition direction.

In the program presented in Fig. 3.4, solution coverage can be performed by two tests covering either the ace and abd paths or the acd paths and a b e .

If we choose the second floor, then the inputs of the two tests are:

A = 3, B = 0, X = 3

A = 2, B = 1, X = 1

Decision coverage is a stronger criterion than operator coverage, but it also has its drawbacks. For example, the path where X does not change (if ace and abd is selected) will be tested with a 50% probability. If there is an error in the second solution (for example, X <1 instead of X > 1 ), then the error will not be detected by the two tests in the previous example.

Condition coverage method

The best criterion in comparison with the previous one; is covering conditions. In this case, such a number of tests is recorded so that all possible results of each condition in the solution are performed at least once. Since this coverage does not always lead to the fulfillment of each operator, an additional criterion is required, which consists in the fact that each entry point into the program must be transferred at least once.

The given program has 4 conditions:

A > 1, B = 0, A = 2, X > 1

You need so many tests to implement the situation:

A > 1, A <= 1; B = 0, B ! = 0 at a ;

A == 2, A ! = 2; X > 1, X <= 1 at point b .

Tests satisfying this condition:

A = 2, B = 0, X = 4 ( ace )

A = 1, B = 1, X = 1 ( abd )

Although a similar number of tests for this example has already been created, coverage of conditions is usually better than solution coverage, since it can (but not always) cause solutions to be executed under conditions that are not implemented with solution coverage.

Applying the criterion for covering conditions at first glance satisfies the criterion for covering solutions, this is not always the case. The conditional coverage tests for our example cover the results of all decisions, but this is only a coincidence. For example, two alternative test

A = 1, B = 0, X = 3

A = 2, B = 1, X = 1

cover the results of all conditions, but only two of the four results of the decisions (they both cover the abe path and, therefore, do not fulfill the result of the “truth” of the first solution and the result of the “false ” of the second solution).

Solution / Condition Coverage Method

The solution to the above problem is to cover the solutions / conditions. It requires so many tests that all possible results of each condition in the solution are executed at least once, all results of each solution are executed at least once, and control is transferred to each entry point at least once.

The disadvantage of the solution / condition coverage criterion is the impossibility of its application to fulfill all the results of all conditions. This may be due to the fact that certain conditions are hidden by other conditions.

Combinatorial coverage method

The criterion that solves these and some other problems is the criterion of combinatorial coverage of conditions . It requires the creation of so many tests so that all possible combinations of the results of the conditions in each solution and all the entry points are performed at least once.

According to this criterion in the program fig. 3.4. The following eight combinations should be covered with tests:

1 . A> 1, B = 0;

2. A> 1, B! = 0 ;

3. A <= 1, B = 0 ;

4. A <= 1, B! = 0 ;

5. A = 2, X> 1 ;

6. A = 2, X <= 1 ;

7. A ! = 2, X > 1 ;

8. A ! = 2, X <= 1 .

In order to test these combinations, it is not necessary to use all eight tests. In fact, they can be covered by four tests. We give the input values ​​of the tests and combinations that they cover:

1. A = 2, B = 0, X = 4 K: 1, 5 2. A = 2, B = 1, X = 1 K: 2, 6

3. A = 1, B = 0, X = 2 K: 3, 7 4. A = 1, B = 1, X = 1 K: 4, 8

That four tests correspond to four different paths in Fig. 3.4 is a coincidence. In fact, the tests presented above do not cover all paths; they skip the acd path .

Thus, for programs containing only one condition for each solution, the criterion is minimal, whose test suite

causes all the results of each solution to be executed at least once,

transfers control to each entry point at least once (to ensure that each program statement is executed at least once).

For programs containing solutions that each have more than one condition, the minimum criterion consists of a set of tests.

causing all possible combinations of the results of the conditions in each solution,

transmitting control to each program entry point at least once. (The word “possible” is used because some combination of conditions may not be feasible; for example, it is impossible to set K for combinations K <0 , K> 40. )

3.3.6. Baseline Test Method

Метод тестирования базового пути дает возможность получить оценку комплексной сложности программы и использовать эту оценку для определения необходимого количества тестов (тестовых вариантов).

Тестовые варианты разрабатываются для базового множества путей (маршрутов) в программе. Они гарантируют однократное выполнение каждого оператора программы.

При таком способе тестирования программа представляется в виде потокового графа. Потоковый граф — это совокупность узлов (или вершин) и дуг (ориентированных ребер).

Свойства потокового графа.

Узлы соответствуют линейным участкам программы, они включают 1 или несколько операторов программы.

Закрывающиеся скобки условных операторов и операторов циклов рассматриваются как отдельные операторы.

Дуги отображают поток управления в программе (передачи управления между операторами).

Различают операторные и предикатные узлы. Их операторного узла выходит 1 дуга, из предикатного — 2.

Предикатные узлы соответствуют простым условиям в программе. Составные условия отображаются в несколько предикатных узлов. (Составные условия – это условия, в которых используется 1 или несколько булевых операций (OR, АND)). Например, фрагмент программы

if a or b

then X

else Y

end if

вместо прямого отображения в потоковый граф вида, показанного на рис. 3.5, отображается в преобразованный потоковый граф (рис. 3.6).

Methods to ensure the high quality of the developed softwareMethods to ensure the high quality of the developed software

Рисунок 3.5. Прямое ото- Рисунок 3.6 . — Преобразованный

бражение в потоковый граф потоковый граф

6. Замкнутые области, образуемые дугами и узлами, называются регионами .

7. Окружающая граф среда рассматривается как дополнительный регион (рис. 3.6).

Для построения потокового графа операторы текста программы нумеруются, затем пронумерованный текст отображается в узлы и дуги графа в соответствии с вышеперечисленными правилами. С помощью построенного графа выделяются независимые маршруты. Каждый путь (маршрут) начинается в начальном узле и заканчивается в конечном. Путь, который вводит новый оператор обработки или новое условие, называется независимым . То есть, независимый путь должен содержать дугу, не входящую в ранее определенные пути. Совокупность независимых путей графа образует базовое множество путей .

Базовое множество путей обладает мощностью, которая равна цикломатической сложности потокового графа. Цикломатическая сложность – это метрика ПО, которая дает количественную оценку логической сложности программы. Она определяет количество независимых путей в базовом множестве программы и верхнюю оценку количества тестов, которое гарантирует однократное выполнение всех операторов программы.

Цикломатическая сложность вычисляется одним из трех способов:

Цикломатическая сложность равна количеству регионов потокового графа;

По формуле V = E N + 2 ,

где V – цикломатическая сложность,

Е – количество дуг графа,

N – количество узлов графа.

3. По формуле V = p + 1 , где р – количество предикатных узлов графа.

Рассчитав цикломатическую сложность, можно определить количество независимых путей, которое нужно искать в графе.

Example.

Рассмотрим процедуру сжатия:

процедура сжатие

1 выполнять пока нет EOF

one читать запись;

2 если запись пуста

3 то удалить запись:

four иначе если поле а >= поля b

five то удалить b ;

6 иначе удалить а;

конец если;

конец если;

7b конец выполнять ;

8 конец сжатие;

Она отображается в потоковый граф, представленный на рис. 3.7.

Этот потоковый граф имеет четыре региона. Следовательно, нужно определить 4 независимых маршрута. Обычно независимые маршруты формируются в порядке от самого короткого к самому длинному.

Перечислим независимые пути для этого потокового графа:

Путь 1: 1 — 8.

Путь 2: 1 – 2 – 3 — 7а — 7b – 1 — 8.

Путь 3: 1 – 2 – 4 – 5 — 7а — 7b – 1 — 8.

Путь 4: 1 – 2 – 4 – 6 — 7а — 7b – 1 — 8.

Methods to ensure the high quality of the developed software

Рисунок 3.7. — Пример потокового графа

Последовательность выполнения тестирования базового пути.

На основе текста программы формируется потоковый граф.

Определяется цикломатическая сложность (по каждой из трех формул).

Определяется базовое множество независимых путей.

Подготавливаются тесты, инициирующие выполнение каждого пути. Тест включает исходные данные и ожидаемые результаты. Исходные данные выбираются так, чтобы предикатные вершины обеспечивали нужные переключения, т.е. выполнялись те операторы, которые перечислены в конкретном пути, причем в требуемом порядке.

Реальные результаты каждого теста сравниваются с ожидаемыми.

3.4. Методы функционального тестирования

Стратегия функционального тестирования включает в себя следующие методы тестирования

Метод эквивалентных разбиений;

Метод анализа граничных значений;

Метод анализа причинно-следственных связей;

Метод предположения об ошибке.

3.4.1. Метод эквивалентных разбиений

В этом способе входная область данных программы делится на классы эквивалентности.

Класс эквивалентности — набор данных с общими свойствами. Класс эквивалентности включает множество значений данных, допустимых или недопустимых по условиям ввода. Обрабатывая разные элементы класса, программа должна вести себя одинаково, поэтому для каждого класса эквивалентности разрабатывается один тестовый вариант.

Классы эквивалентности могут быть определены по спецификации на программу. Например, если спецификация задает в качестве допустимых входных величин 5-разрядные целые числа в диапазоне 15 000…70 000, то класс эквивалентности допустимых исходных данных (правильный класс эквивалентности) включает величины от 15 000 до 70 000, а два класса эквивалентности недопустимых исходных данных (неправильные классы эквивалентности) составляют:

числа меньшие, чем 15 000;

числа большие, чем 70 000.

Правила формирования классов эквивалентности.

Если условие ввода задает диапазон п…т, то определяются:

один правильный класс эквивалентности: n х ≤ т

и два неправильных класса эквивалентности: х < п;

х > т.

2. Если условие ввода задает конкретное значение а, то определяется

один правильный класс эквивалентности: х = а ;

и два неправильных класса эквивалентности: х < а;

х >а.

3 Если условие ввода задает множество значений {а, b , с}, то определяются

один правильный класс эквивалентности: х =а, х = b , х = с;

и один недопустимый класс эквивалентности:

а)&(х b )&(х с).

4. Если условие ввода задает булево значение, например true, то определяются

один правильный класс эквивалентности {true}

и один неправильный класс эквивалентности {f alse}.

После построения классов эквивалентности разрабатываются тестовые варианты. Этот процесс включает следующие шаги:

каждому классу эквивалентности назначается уникальный номер,

проектируются тесты, каждый их которых покрывает как можно большее число непокрытых правильных классов

эквивалентности до тех пор, пока все правильные классы не будут покрыты тестами,

записываются тесты, каждый из которых покрывает один и только один из непокрытых неправильных классов эквивалентности до тех пор, пока все неправильные классы не будут покрыты тестами.

Недостаток метода эквивалентных разбиений в том, что он не исследует комбинации входных условий.

3.4.2. Метод анализа граничных значений

Как правило, большая часть ошибок происходит на границах области ввода, а не в центре. Анализ граничных значений заключается в получении тестовых вариантов, которые анализируют граничные значения. Данный способ тестирования дополняет способ разбиения по эквивалентности.

Сформулируем правила анализа граничных значений.

1. Если условие ввода задает диапазон п…т , то тестовые варианты должны быть построены:

для значений п и т;

для значений чуть левее п и чуть правее т на числовой оси.

Например, если задан входной диапазон -1,0…+1,0, то создаются тесты для значений — 1,0, +1,0, — 1,001, +1,001.

2. Если условие ввода задает дискретное множество значений, то создаются тестовые варианты:

для проверки минимального и максимального из значений;

для значений чуть меньше минимума и чуть больше максимума.

Так, если входной файл может содержать от 1 до 255 записей, то создаются тесты для 0, 1, 255, 256 записей.

3. Правила 1 и 2 применяются к условиям области вывода.

Рассмотрим пример, когда в программе требуется выводить таблицу значений. Количество строк и столбцов в таблице меняется. Задается тестовый вариант для минимального вывода, а также тестовый вариант для максимального вывода (по объему таблицы).

4. Если внутренние структуры данных программы имеют предписанные границы, то разрабатываются тестовые варианты, проверяющие эти структуры на их границах.

5. Если входные или выходные данные программы являются упорядоченными множествами (например, последовательным файлом, таблицей), то надо тестировать обработку первого и последнего элементов этих множеств.

Большинство разработчиков используют этот способ интуитивно. При применении описанных правил тестирование границ будет более полным, в связи с чем возрастет вероятность обнаружения ошибок.

Пример применения способов разбиения по эквивалентности и анализа граничных значений. Нужно протестировать программу бинарного поиска. Известна спецификация этой программы. Поиск выполняется в массиве элементов М, возвращается индекс I элемента массива, значение которого соответствует ключу поиска Key .

Предусловия:

1) массив должен быть упорядочен;

2) массив должен иметь не менее одного элемента;

3) нижняя граница массива (индекс) должна быть меньше или равна его верхней границе.

Постусловия:

1) если элемент найден, то флаг Result=True, значение I — номер элемента;

2) если элемент не найден, то флаг Result=False, значение I не определено.

Для формирования классов эквивалентности (и их границ) надо построить дерево разбиений. Листья дерева разбиений дадут нам искомые классы эквивалентности. Определим стратегию разбиения. На первом уровне будем анализировать выполнимость предусловий, на втором уровне — выполнимость постусловий. На третьем уровне можно анализировать специальные требования, полученные из практики разработчика. В нашем примере мы знаем, что входной массив должен быть упорядочен. Обработка упорядоченных наборов из четного и нечетного количества элементов может выполняться по-разному. Кроме того, принято выделять специальный случай одноэлементного массива. Следовательно, на уровне специальных требований возможны следующие эквивалентные разбиения:

1) массив из одного элемента;

2) массив из четного количества элементов;

3) массив из нечетного количества элементов, большего 1.

Наконец на последнем, 4-м уровне критерием разбиения может быть анализ границ классов эквивалентности. Очевидно, возможны следующие варианты:

1) работа с первым элементом массива;

2) работа с последним элементом массива;

3) работа с промежуточным (ни с первым, ни с последним) элементом массива.

Структура дерева разбиений приведена на рис.3.8.

Methods to ensure the high quality of the developed software

Рисунок 3.8. — Дерево разбиений области исходных данных бинарного поиска

Это дерево имеет 11 листьев. Каждый лист задает отдельный тестовый вариант. Покажем тестовые варианты, основанные на проведенных разбиениях (ИД — исходные данные, ОЖ.РЕЗ. — ожидаемый результат).

Тестовый вариант 1 (единичный массив, элемент найден) ТВ1:

ИД : М=15; Кеу=15.

ОЖ . РЕЗ .: Resutt=True; I=1.

Тестовый вариант 2 (четный массив, найден 1-й элемент) ТВ2:

ИД : М=15, 20, 25,30,35,40; Кеу=15.

ОЖ . РЕЗ .: Result=True; I=1.

Тестовый вариант 3 (четный массив, найден последний элемент) ТВЗ:

ИД: М=15, 20, 25, 30, 35, 40; Кеу=40.

ОЖ.РЕЗ:. Result=True; I=6.

Тестовый вариант 4 (четный массив, найден промежуточный элемент) ТВ4:

ИД : М=15,20,25,30,35,40; Кеу=25.

ОЖ . РЕЗ .: Result-True; I=3.

Тестовый вариант 5 (нечетный массив, найден 1-й элемент) ТВ5:

ИД : М=15, 20, 25, 30, 35,40, 45; Кеу=15.

ОЖ . РЕЗ .: Result=True; I=1.

Тестовый вариант 6 (нечетный массив, найден последний элемент) ТВ6:

ИД : М=15, 20, 25, 30,35, 40,45; Кеу=45.

ОЖ . РЕЗ .: Result=True; I=7.

Тестовый вариант 7 (нечетный массив, найден промежуточный элемент) ТВ7:

ИД : М=15, 20, 25, 30,35, 40, 45; Кеу=30.

ОЖ . РЕЗ .: Result=True; I=4.

Тестовый вариант 8 (четный массив, не найден элемент) ТВ8:

ИД : М=15, 20, 25, 30, 35,40; Кеу=23.

Coolant . CUT : Result = False; I =?

Test version 9 (odd array, element not found) TV9;

ID: M = 15, 20, 25, 30, 35, 40, 45; Keu = 24.

OZH.REZ: Result = False; I =?

Test version 10 (single array, element not found) TV10:

ID : M = 15; Keu = 0.

Coolant . CUT : Result = False; I =?

Test version 11 (preconditions violated) TV11:

ID: M = 15, 10, 5, 25, 20, 40, 35; Keu = 35.

OK CUT: Alarm Report: Array is not ordered.

3.4.3. Method for analyzing cause-effect relationships

The method of analysis of cause-effect relationships (APSS) allows you to systematically select highly effective tests.

The construction of tests is carried out in several stages.

When applying the method to large specifications, the specification is broken into work areas, because otherwise, the MSS tables will be very cumbersome (for example, when testing the compiler, you can consider individual language operators as a working area).

The specification defines many causes and many links. The reason is a separate input condition or a class of equivalent input conditions. The consequence is an output condition. Each cause and effect is assigned a separate number.

Based on the analysis of the semantic content of the specification, a truth table is constructed in which all possible combinations of causes are sequentially searched and the consequences of each combination of causes are determined. The table is provided with notes specifying constraints and describing combinations of causes and / or effects that are impossible due to syntax or external constraints. Similarly, a table is constructed for equivalence classes. When building a table, it is recommended to use the following techniques:

whenever possible, independent MSS groups are allocated in separate tables;

true is denoted 1, false is 0, X is used to denote indifferent states, which implies an arbitrary value of the condition.

Each row of the truth table is converted to a test. It is necessary to try to combine tests from independent tables.

3.4.4. Error assumption method

A person with practical experience often unconsciously applies a test design method called an error assumption. If there is a certain program, it intuitively assumes probable types of errors and then develops tests to detect them.

The procedure for the error assumption method is difficult to describe, since it is largely intuitive. The main idea of ​​it is to list in a list of possible errors or situations in which they may appear, and then based on this list, write tests. For example, this situation occurs when the value 0 at the input and output of the program. Consequently, it is possible to build tests for which certain input data have zero values ​​and for which certain output data is set to 0. With a variable number of inputs or outputs (for example, the number of the required input records when searching in the list) errors are possible in situations such as "no" and “One” (for example, an empty list, a list containing only one search entry). Another idea is to define tests related to assumptions that a programmer can make while reading a specification (i.e., moments that were omitted from the specification by chance or because the specification author considered them obvious).

Since this procedure cannot be clearly defined, the best way to discuss the meaning of the method of assuming an error is to look at examples. Consider testing a sorting program as an example. In this case, you need to investigate the following situations:

Sortable list is empty.

The sortable list contains only one value.

All entries in the sorted list have the same value.

The list is already sorted.

In other words, it is required to list those special cases that may not be taken into account when designing a program.

3.5. Organization of the program testing process security

3.5.1. Methods of testing software systems

The testing process combines various testing methods into a planned sequence of steps that lead to the successful construction of a software system. The PS testing technique can be presented in the form of an unrolling helix (Fig. 3.9).

At the beginning, testing of elements (modules) is performed , verifying the results of the PS coding phase. In the second step, integration testing is performed that focuses on identifying errors in the PS design phase. On the third turn of the helix, a correctness test is performed , verifying the correctness of the stage of analysis of requirements to the PS. At the final turn of the helix, system testing is carried out to identify defects in the PS system analysis stage.

We characterize each step of the testing process.

1. Testing items . The goal is an individual check of each module. Used methods of testing the "white box".

Methods to ensure the high quality of the developed software

Figure 3.9. - Spiral testing process PS

2. Integration testing . The goal is to test the assembly of modules into a software system. Mostly used black box testing methods.

3. Testing correctness . The goal is to test the implementation of all functional and behavioral requirements in the software system, as well as efficiency requirements. Used exclusively testing methods "black box".

4. System testing. The goal is to verify the correctness of the combination and interaction of all elements of the computer system, the implementation of all system functions.

The organization of the testing process in the form of an evolutionary unfolding helix ensures maximum efficiency in the search for errors.

3.5.2. Types of tests for RUP

RUP regulates and describes many different types of tests that focus on various design issues.

Consider the main types of tests for RUP:

functional testing;

database integrity testing;

business testing cycles;

user interface testing;

performance profiling;

Stress Testing;

stress testing;

volume testing;

access control testing, security testing;

failover testing;

configuration testing;

installation testing.

These types of tests will allow for comprehensive testing of the software product. RUP regulates all types of work, including the methodology for the preparation of test kits. It regulates such parameters as: purpose of testing, testing methodology, testing criteria, and also determines the specific conditions necessary for conducting comprehensive testing.

Let us consider in detail the main types of tests, additional testing conditions, test requirements and completion criteria.

3.5.2.1. Functional testing

The purpose of testing: to be in the proper functioning of the test object. The correctness of navigation through the object is tested, as well as input, processing and output of data.

Functional testing of the facility is planned and carried out on the basis of the requirements specified at the stage of determining the requirements. Requirements are use case diagrams, business functions and business rules. The purpose of functional tests is to verify that the developed components comply with the established requirements.

The basis of functional testing is the black box testing strategy. If necessary, at the stage of functional testing, you can use the strategy of testing the "white box". At this stage, the testing of the “white box” is not applied in its pure form - a combination of two types of testing is used.

3.5.2.2. Testing data and database integrity

Objective : to ensure the reliability of database access methods, in their proper execution, without violating the integrity of the data.

It is necessary to consistently try the maximum possible number of ways to access the database. Tests are made in such a way as to “load” the base with a sequence of both correct values ​​and obviously false ones. Evaluate the correctness of the data and make sure that the database processes the incoming values ​​correctly.

3.5.2.3. Business Cycle Testing

The purpose of testing: to check the correct functioning of the object of testing and related processes for compliance with the requirements of business models and schedules.

Testing business cycles should emulate actions performed in a project during a specific time interval. The period must be determined by a duration of one year. All events, actions and transactions that are expected to occur during this period with the application must be reproduced. Includes all daily, weekly, monthly cycles and events that are date sensitive.

3.5.2.4. User Interface Testing

The purpose of testing is to check the correctness of navigation on the test object (including interwindow transitions, transitions between fields, correct processing of the “enter” and “tab” keys, working with a mouse, functioning of accelerator keys and full compliance with industry standards);

Check objects and their characteristics (menus, dimensions, positions, states, input focus, etc.) for compliance with generally accepted standards for a graphical user interface.

3. 5.2.5. Performance profiling

Performance profiling is an estimate of the response time of an application or database, transaction speed, and other time-dependent parameters. The purpose of the profiling work is to make sure that the performance requirements of the application or database are met.

During performance profiling, functions of the performance of the test object are recorded depending on specific conditions (workload, hardware configuration, type of operating system).

The goal of testing is to check the performance behavior of the specified transactions or business functions during the expected load and the expected load in the worst case.

Used test kits designed for functional testing or testing business cycles. It is necessary to constantly modify data files to increase (complicate) the number of transactions.

3.5.2.6 . Stress Testing

Load testing is used to determine the behavior of the test object in varying workloads, to assess the ability of an object to function correctly in changing conditions. The purpose of load testing is to determine and ensure the correct operation of all system functions beyond the maximum workload. In addition, this type of testing provides an assessment of the characteristics of the test object (response time, transaction time, as well as any time sensitive operations)

Tests designed for functional testing or business cycle testing are used. It is necessary to change the composition of the data, their number and complexity to increase the response time.

3.5.2.7. Stress Testing

Stress testing - a subtype of load testing, the purpose of which is to find errors that are caused by a shortage of resources (insufficient amount of free RAM or disk space, or insufficient network bandwidth). This type of testing will effectively catch errors that do not occur during normal, normal testing.

It is also convenient to use this type of testing to obtain information about peak loads, after which the application under test stops working (or does not work correctly)

Tests created for load testing and performance testing are used;

For effective testing, the testing machine must intentionally have a limited number of available resources.

3.5.2.8. Bulk testing

The goal of volumetric testing is to find the limits of the size of the transmitted data. Volumetric testing also identifies a continuous maximum load or amount of information that can be processed in a given time interval (for example, a test object processes a set of records for generating a report, and volumetric testing will allow you to use large test databases and test how the program operates. whether she is the right message).

Verifies that the test object functions correctly in the following scenarios:

connected or simulated maximum number of clients;

long-term business functions are correctly executed;

the maximum database size is reached, and multiple queries and reports are executed simultaneously.

Tests created for load testing and performance testing are used;

Simulates the maximum number of clients to pass the worst scenario of the system;

It creates a maximum base and supports customer access to it for a long time.

3.5.2.9. Access control testing. Security testing

This type of testing focuses on the performance of two key security levels:

security at the application level, access to data or business functions;

security at the system level, registration (authentication) or remote login;

Security at the application level should ensure that the actors are limited in certain functions or in the data available to them. For example, all users can perform operations to add data to the database, but only managers or administrators can delete them.

Security at the data level ensures that user number one can only see financial information about the client, and user number two, only demographic.

Security at the system level ensures that only those users who have access to it and only through appropriate gateways will gain access to the system.

The purpose of testing is: (application-level security) to verify that the user can access only those functions or data to which he has access.

(Security at the system level). Check that only those users who are logged in (application) are allowed to perform various operations.

The list of users and functions (or data) to which everyone has access, access is determined;

Tests are created for each user object access tests with validation of transactions;

Custom types are modified (constraint input) and re-passed through tests.

3.5.2.10. Disaster Recovery Testing

This type of testing is conducted to confirm that the application under test can be successfully restored with the same functionality after a hardware or software failure.

The data loss tolerance test should show that the test object is able to correctly recover lost data (for example, restore from a backup copy) if a loss occurred.

The hardware stability test should demonstrate that the test object successfully handles such errors as: an input / output error, system failures, and invalid system database pointers.

The goal of testing is to verify that the recovery processes (manual or automatic modes) properly restore the data, the application itself, and the system.

The following types of states should be taken into account when creating tests:

power failure on the client and server;

communication failure through a network server;

power loss in DASD devices;

the presence of incomplete data cycles (interruption of the data filtering process, errors in data synchronization);

invalid key or database pointer;

wrong or damaged item in the database.

For this type of testing, functional tests and business cycle tests are used;

During testing, you need to simulate the following situations:

turn off the computer;

simulate a network break.

As soon as the above steps are completed, you need to call the procedure for restoring the object under test or wait for the automatic activation of the corresponding mechanisms.

3.5.2.11. Configuration testing

A special type of testing aimed at checking the compatibility of the test object with various hardware and software.

Configuration testing is necessary to ensure compatibility of the test object with the highest possible equipment to ensure reliable operation. Also, configuration testing should take into account the type of operating system.

RUP has an extensive mechanism for planning and simultaneously running configuration tests on different platforms simultaneously.

The test should take into account such criteria as: installed software (and their versions), availability and versions of hardware drivers, availability of hardware (in arbitrary combinations).

The purpose of testing is to verify the object of testing for compatibility with the equipment, operating systems and third-party software products declared in the specification.

Used tests of functional testing. Before testing, open the maximum number of well-known applications. Тестирование проводится на разных платформах.

3.5.2.12. Инсталляционное тестирование

Последний вид тестирования в списке, но первая функция, с которой пользователь начнет ознакомление с программным продуктом.

Данный вид тестирования проверяет способность объекта тестирования корректно и без сбоев установиться на компьютер пользователя с обработкой всех возможных исключительных ситуаций (нехватка места, сбой питания).

Цель т естирования: у достовериться в том, что объект тестирования правильно инсталлируется на систему, удовлетворяющую всем программно-аппаратным требованиям из инструкции по инсталляции. Особое внимание уделяется следующим видам установки:

новая инсталляция, новая машина, не инсталлировалась на нее ранее;

обновление существующей версии (переинсталляция);

update from the old version (upgrade)

attempt to install the old version over the new one.

See also

created: 2018-02-02
updated: 2024-11-13
41



Rating 9 of 10. count vote: 2
Are you satisfied?:



Comments


To leave a comment
If you have any suggestion, idea, thanks or comment, feel free to write. We really value feedback and are glad to hear your opinion.
To reply

Software reliability

Terms: Software reliability