Lecture
It differs from the understanding of artificial intelligence according to John McCarthy when they proceed from the assumption that artificial systems are not obliged to repeat in their structure and functioning the structure and the processes occurring in it that are inherent in biological systems. Proponents of this approach believe that the phenomena of human behavior, its ability to learn and adapt is the result of the biological structure and characteristics of its functioning.
This includes several directions. Neural networks are used to solve fuzzy and complex problems, such as recognizing geometric shapes or clustering objects. The genetic approach is based on the idea that a certain algorithm can become more efficient if it borrows better characteristics from other algorithms (“parents”). A relatively new approach, where the task is to create an autonomous program - an agent that interacts with the external environment, is called the agent approach .
(redirected from the “Quasi-biological paradigm”)
Biocomputing (or the quasi-biological paradigm [1] ) (English Biocomputing ) is a biological area in artificial intelligence that focuses on the development and use of computers that function as living organisms or contain biological components, so-called biocomputers.
The forefather of the biological direction in cybernetics is W. McCulloch, as well as the subsequent ideas of M. Conrad, which led to the direction — biomolecular electronics. Unlike understanding of artificial intelligence according to John McCarthy, when they proceed from the assumption that artificial systems are not obliged to repeat in their structure and functioning the structure and the processes occurring in it, inherent in biological systems, supporters of this approach believe that the phenomena of human behavior, The ability to learn and adapt is a consequence of the biological structure and features of its functioning.
Often the quasi-biological paradigm is opposed to the understanding of artificial intelligence according to John McCarthy, then they talk about:
The “von Neumann paradigm” is the basis of the overwhelming majority of modern information processing tools. It is optimal when mass problems of sufficiently low computational complexity are solved.
The quasi-biological paradigm today is much richer in its content and possible applications than the initial approach of McCulloch and Pitts. It is in the process of developing and exploring the possibilities of creating effective means of information processing on its basis.
K. Zaener and M. Konrad formulated the concept of an individual machine , as opposed to the von Neumann universal computer. This concept is based on the following provisions:
Therefore, the main features of an individual machine are as follows:
Biocomputing allows you to solve complex computational problems by organizing calculations using living tissues, cells, viruses and biomolecules. Often use deoxyribonucleic acid molecules, on the basis of which a DNA computer is created. In addition to DNA, protein molecules and biological membranes can also be used as a bioprocessor. For example, molecular models of the perceptron are created on the basis of bacteriorhodopsin-containing films [1] .
Comments
To leave a comment
Biological modeling of artificial intelligence
Terms: Biological modeling of artificial intelligence